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Replacing the expectations with autocorrelation coefficients yields the system of n linear
equations
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with the n coefficients cj as the unknowns. This can be written compactly as RC = P
and can easily be solved by Gaussian elimination or by inverting matrix R. The point
is that matrix inversion requires in general O(n3) operations, but ours is not a general
case, because our matrix R is special. It is easy to see that each diagonal of R consists
of identical elements. Such a matrix is called a Toeplitz matrix, after its originator,
Otto Toeplitz, and it can be inverted by a number of specialized, efficient algorithms.
In addition, our R is also symmetric.

Otto Toeplitz (1881–1940) came from a Jewish family that produced several teachers
of mathematics. Both his father, Emil Toeplitz, and his grandfather, Julius Toeplitz,
taught mathematics in a Gymnasium and they also both published mathematics pa-
pers. Otto was brought up in Breslau and attended a Gymnasium in that city. His
family background made it natural that he also should study mathematics.

During his long, productive carrer, Toeplitz studied algebraic geometry, integral
equations, and spectral theory. He worked also on summation processes, infinite-
dimensional spaces and functions on them. In the 1930s he developed a general theory
of infinite dimensional spaces and criticized Banach’s work as being too abstract.

Toeplitz operators and Toeplitz matrices bear his name.

FLAC employs a recursive, efficient method, known as the Levinson-Durbin algo-
rithm, to solve this system of n equations. This algorithm was first proposed by Norman
Levinson in 1947 [Levinson 47], improved by J. Durbin in 1960 [Durbin 60], and further
improved by several researchers. In its present form it requires only 3n2 multiplications.
A description of this algorithm is outside the scope of this book, but can be found,
together with a derivation, in [Parsons 87].

The author would like to thank Josh Coalson, for his help with this section.

7.11 WavPack

(This section written by David Bryant, WavPack’s developer.)

WavPack [WavPack 06] is a completely open, multiplatform audio compression
algorithm and software that supports three compression modes, lossless, high-quality
lossy, and a unique hybrid compression mode. It handles integer audio samples up
to 32-bits wide and also 32-bit IEEE floating-point data [IEEE754 85]. The input
stream is partitioned by WavPack into blocks that can be either mono or stereo and are
generally 0.5 seconds long (but the length is actually flexible). Blocks may be combined
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in sequence by the encoder to handle multichannel audio streams. All audio sampling
rates are supported by WavPack in all its modes.

WavPack defaults to the lossless mode. In this mode, the audio samples are simply
compressed at their full resolution and no information is discarded. WavPack generally
provides a reasonable compromise between compression ratio and encoding/decoding
speed. However, for specific applications, an alternate compromise may be more desir-
able. For this reason, WavPack incorporates an optional “fast” mode that is fast and
entails only a small penalty in compression performance and a “high” mode that aims
for maximum compression (at a somewhat slower pace).

The lossy mode employs no subband coding or psychoacoustic noise masking. In-
stead, it is based on variable quantization in the time domain combined with mild noise
shaping. This mode can operate from bitrates as low as 2.22 bits per sample up to fully
lossless and offers considerably more flexibility and performance than the similar, but
much simpler, ADPCM (Section 7.6). This makes the lossy mode ideal for high-quality
audio encoding where the data storage or bandwidth requirements of the lossless mode
might be prohibitive.

Finally, the hybrid mode combines the lossless and lossy modes into a single op-
eration. Instead of a single output file being generated from a source, two files are
generated. The first, with the extension wv, is a smaller lossy file that can be played
on its own. The second is a “correction” file (wvc) that, when combined with the first,
provides lossless restoration of the original audio. The two files together have essentially
the same size as the output produced by the pure lossless mode, so the hybrid mode
generates very little additional overhead.

Efficient hardware decoding was among the design goals of WavPack, and this
weighed heavily (along with patent considerations) in the design decisions. As a result,
even the most demanding WavPack mode will easily decode CD quality audio in real
time on an ARM7 processor running at 75 MHz (and the default modes use considerably
less than that).
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Figure 7.31: The WavPack Encoder.

Figure 7.31 is a block diagram of the WavPack encoder. Its main parts are the
joint-stereo processing (removing inter-channel correlations), multipass decorrelation
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(removing intra-channel correlations between neighboring audio samples), and the en-
tropy coder.

Decorrelation
The decorrelation passes are virtually identical in all three modes of WavPack. The
first step in the decorrelation process is to convert the left and right stereo channels
to the standard difference and average (also referred to as side and mid) channels by
s(k) = l(k)− r(k) and s′(k) = int

(
(l(k)+ r(k))/2

)
. Notice that the integer division by 2

discards the least-significant bit of the sum l(k)+r(k), but this bit can be reconstructed
from the difference, because a sum A + B and a difference A− B have the same least-
significant bit.

The second decorrelation step is prediction. WavPack performs multiple passes of
very simple, single-tap linear predictive filters that employ the sign-sign LMS method
for adaptation. (The sign-sign LMS method [adaptiv9 06] is a variation on the stan-
dard least-mean-squares method.) Having only one adjustable weighing factor per filter
eliminates problems of instability and non-convergence that can occur when multiple
taps are updated from a single result. The overall computational complexity of the
process is simply controlled by the total number of filtering passes made. The default
case performs five passes, as this provides a good compromise of compression vs. speed.
In the “fast” mode, only two passes are made, while the “high” mode incorporates the
maximum allowed 16 passes.

There are actually 13 variations of the filter depending on what sample value (or
linear function of two sample values) is used as the input value u(k) to the prediction
filter. These variations are identified by a parameter named “term.” In the case of a
single channel, filtering depends on the value of this parameter as follows

u(k) =

⎧⎨
⎩

1 ≤ term ≤ 8, s(k − term),
term = 17, 2s(k − 1)− s(k − 2),
term = 18,

(
3s(k − 1)− s(k − 2)

)
/2.0,

where s(k) is the sample to be predicted and the recent sample history is s(k − 1),
s(k − 2),. . . , s(k − 8).

For the dual channel case (which may be left and right or mid and side) there are
three more filter variations available that use cross-channel information

if(term = −1), u(k) = s′(k), u′(k) = s(k − 1),
if(term = −2), u(k) = s′(k − 1), u′(k) = s(k),
if(term = −3), u(k) = s′(k − 1), u′(k) = s(k − 1).

Once u(k) has been determined, an error (or residual) value e(k) is computed as
the difference e(k) = s(k)−w(k)u(k), where w(k) is the current filter weight value. The
weight generally varies between +1 for highly correlated samples and 0 for completely
uncorrelated samples. It can also become negative if there is a negative correlation
between the sample values. Negative correlation would exist if (−1×u(k)) was better
than u(k) as a predictor of s(k). This often happens with samples with large amounts
of high frequencies.



7.11 WavPack 775

Finally, the weight is updated for the next sample based on the signs of the filter
input and the residual w(k + 1) = w(k) + d · sgn(u(k)) · sgn(e(k)), where parameter d
is the step-size of the adaptation, a small positive integer. (The sgn function used by
WavPack returns +1, 0, or −1.) The rule for adapting w(k) implies that if either u(k)
or e(k) is zero, the weight is not updated. In cases where the input to the filter comes
from the same channel as the sample being predicted (i.e., where “term” is positive), the
magnitude of the weight is self limiting and is therefore allowed to exceed ±1. However,
in the cross-channel cases (where “term” is negative), the weight could grow indefinitely,
and so is clipped to ±1 after each adaptation.

Here’s an example of an adaptation step. Assuming that the input u(k) to the
predictor is 105, sample s(k) to be predicted is 100, the current filter weight w(k) is 0.8,
and the current stepsize d is 0.01, we first compute the residual e(k) = s(k)−w(k)·u(k) =
100− 105 · 0.8 = 16 and then update the weight

w(k + 1) = w(k) + s · sgn(e(k)) · sgn(u(k))
= 0.8 + 0.01 · sgn(100) · sgn(16)
= 0.8 + 0.01 · 1 · 1 = 0.81.

We can see that if the original weight had been more positive (greater than 0.8), the
prediction would have been closer to s(k) and the residual would have been smaller.
Therefore, we increase the weight in this iteration.

The magnitude of the stepsize is a compromise between fast adaptation and noisy
operation around the optimum value. In other words, if the stepsize is large, the filter
will adjust quickly to sudden changes in the signal, but the weight will jump around a
lot when it is near the correct value. Too small a stepsize will cause the filter to adjust
too slowly to rapidly changing audio.

In the lossless mode, the results of the decorrelation (the residuals e(k)) are simply
passed to the entropy coder for exact translation. In the lossy and hybrid modes, in
contrast, the decorrelated values may be coded inexactly based on a defined maximum
allowable error. In this situation, the actual value coded is returned from the entropy
coder and this value is used to update the filter weight and generate the reconstructed
sample value. This is required because during subsequent decoding the exact sample
values will not be available, and we must operate the encoder with only the information
that we will have at that time.

Implementation

All sample data is presented to the decorrelator as 32-bit signed integers, even if the
source is smaller. This is done to allow common routines, but is also required from
an arithmetic standpoint because, for example, 16-bit data might clip at some steps if
restricted to 16-bit storage. The routines are designed in such a way that they will not
overflow on sample data with up to 25 bits of significance. This allows for standard
24-bit audio and the 25-bit significand of 32-bit IEEE data. Any significance beyond
this must be handled by side channel data.

The filter weights are represented in 16-bit signed integers with 10 bits of fraction
(for example 1024 = 0000010 . . . 00︸ ︷︷ ︸

10

2 represents 1.0), and the adjusting step-size may
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range from 1 to 7 units of that resolution. For input values that fit in 16-bit signed
integers, it is possible to perform the rounded weight multiply with a single 16-bit ×
16-bit = 32-bit operation by prediction = (sample * weight + 512) >> 10;

Since “sample” and “weight” both fit in 16-bit integers, the signed product will fit
in 32 bits. We add the 512 for rounding and then shift the result to the right 10 places
to compensate for the 10 bits of fraction in the weight representation. This operation is
very efficiently implemented in modern processors.

For those cases where the sample does not fit in 16 bits, we need more than 32 bits
in the intermediate result, and several alternative methods are provided in the source
code. If a multiply operation is provided with 40 bits of product resolution (as in the
ColdFire EMAC or several Texas Instruments DSP chips), then the above operation
will work (although some scaling of the inputs may be required). If only 32-bit results
are provided, it is possible to perform separate operations for the lower and upper 16
bits of the input sample and then combine the results with shifts and an addition.
This has been efficiently implemented with the MMX extensions to the x86 instruction
set. Finally, some processors provide hardware-assisted double-precision floating-point
arithmetic which can easily perform the operation with the required precision.

As mentioned previously, multiple passes of the decorrelation filter are used. For the
standard operating modes (fast, default, and high) stepsize is always 2 (which represents
about 0.002) and the following terms are employed, in the order shown:

fast mode terms = {17, 17},
default mode terms = {18, 18, 2, 3,−2},

high mode terms = {18, 18, 2, 3,−2, 18, 2, 4, 7, 5, 3, 6, 8,−1, 18, 2}.

For single channel operation, the negative term passes (i.e. passes with cross-channel
correlation) are skipped. Note, however, that the decoder is not fixed to any of these
configurations because the number of decorrelation passes, as well as other information
such as what terms and stepsize to use in each pass, is sent to the decoder as side
information at the beginning of each block.

For lossless processing, it is possible to perform each pass of the decorrelation in a
separate loop acting on an array of samples. This allows the process to be implemented
in small, highly optimized routines. Unfortunately, this technique is not possible in the
lossy mode, because the results of the inexact entropy coding must be accounted for
at each sample. However, on the decoding side, this technique may be used for both
lossless and lossy modes (because they are essentially identical from the decorrelator’s
viewpoint).

Generally, the operations are not parallelizable because the output from one pass is
the input to the next pass. However, in the two-channel mode the two channels may be
performed in parallel for the positive term values (and again this has been implemented
in MMX instructions).

Entropy Coder

The decorrelation step generates residuals e(k) that are signed numbers (generally
small). Recall that decorrelation is a multistep process, where the differences e(k) com-
puted by a step become the input of the next step. Because of this feature of WavPack,
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we refer to the final outputs e(k) of the decorrelation process as residuals. The residuals
are compressed by the entropy encoder. The sequence of residuals is best characterized
as a two-sided geometric distribution (TSGD) centered at zero (see Figure 2.9 for the
standard, one-sided geometric distribution). The Golomb codes (Section 2.5) provide a
simple method for optimally encoding similar one-sided geometric distributions. This
code depends on a single positive integer parameter m. To Golomb encode any non-
negative integer n, we first divide n into a magnitude mag = int(n/m) and a remainder
rem = n mod m, then we code the magnitude as a unary prefix (i.e. mag 1’s followed by
a single 0) and follow that with an adjusted-binary code representation of the remainder.
If m is an integer power of 2 (m = 2k), then the remainder is simply encoded as the
binary value of rem using k bits. If m is not an integer power of 2, then the remainder
is coded in either k or k + 1 bits where 2k < m < 2k+1. Because the values at the low
side of the range are more probable than values at the high side, the shorter codewords
are reserved for the smaller values.

Table 7.32 lists the adjusted binary codes for m values 6 through 11.

remainder when when when when when when
to code m = 6 m = 7 m = 8 m = 9 m = 10 m = 11

0 00 00 000 000 000 000
1 01 010 001 001 001 001
2 100 011 010 010 010 010
3 101 100 011 011 011 011
4 110 101 100 100 100 100
5 111 110 101 101 101 1010
6 111 110 110 1100 1011
7 111 1110 1101 1100
8 1111 1110 1101
9 1111 1110
10 1111

Table 7.32: Adjusted Binary Codes for Six m Values.

The Rice codes are a common simplification of this method, where m is a power of
2. This eliminates the need for the adjusted binary codes and eliminates the division
required by the general Golomb codes (because division by a power of 2 is implemented
as a shift). Rice codes are commonly used by lossless audio compression algorithms to
encode prediction errors. However, Rice codes are less efficient when the optimum m
is midway between two consecutive powers of 2. They are also less suitable for lossy
encoding because of discontinuities resulting from large jumps in the value of m. For
these reasons Rice codes were not chosen.

Before a residual e(k) is encoded, it is converted to a nonnegative value by means
of if e(k) < 0, e(k) = −

(
e(k) + 1

)
. The original sign bit of e(k) is appended to the end

of the coded value. Note that the sign bit is always written on the compressed stream,
even when the value to be encoded is zero, because −1 is also coded as zero. This is
less efficient for very small encoded values where the probability of the value zero is
significantly higher than neighboring values. However, we know from long experience
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that an audio file may have long runs of consecutive zero audio samples (silence), but
relatively few isolated zero audio samples. Thus, our chosen method is slightly more
efficient when zero is not significantly more common than its neighbors. We show later
that WavPack encodes runs of zero residuals with an Elias code.

The simplest method for determining m is to divide the residuals into blocks and
determine the value of m that encodes the block in the smallest number of bits. Com-
pression algorithms that employ this method have to send the value of m to the decoder
as side information. It is included in the compressed stream before the encoded samples.
In keeping with the overall philosophy of WavPack, we instead implement a method that
dynamically adjusts m at each audio sample.

The discussion on page 67 (and especially Equation (2.2)) shows that the best
value for m is the median of the recent sample values. We therefore attempt to adapt
m directly from the current residual e(k) using the simple expression

if
(
e(k) ≥ m(k)

)
then m(k + 1) = m(k) + int

[
m(k) + 127

128

]
,

else m(k + 1) = m(k)− int
[
m(k) + 126

128

]
. (7.10)

The idea is that the current median m(k) will be incremented by a small amount when
a residual e(k) occurs above it and will be decremented by an almost identical amount
when the residual occurs below it. The different offsets (126 and 127) for the two cases
were selected so that the median value can move up from 1, but not go below 1. This
works very well for large values, but because the median is simply an integer, it tends
to be “jumpy” at small values because it must move at least one unit in each step. For
this reason the actual implementation adds four bits of fraction to the median that are
simply ignored when the value is used in a comparison. This way, it can move smoothly
at smaller values.

It is interesting to note that the initial value of the median is not crucial. Regardless
of its initial value, m will move towards the median of the values it is presented with.
In WavPack, m is initialized at the start of each block to the value that it left off on the
previous block, but even if it started at 1 it would still work (but would take a while to
catch up with the median).

There is a problem with using an adaptive median value in this manner. Sometimes,
a residual will come along that is so big compared to the median that a Golomb code
with a huge number of 1’s will be generated. For example, if m was equal to 1 and
a residual of 24,000 occurred, then the Golomb code for the sample would result in
mag = int(24,000/1) = 24,000 and rem = 24,000 mod 1 = 0 and would therefore start
with 24,000 1’s, the equivalent of 3,000 bytes of all 1’s. To prevent such a situation and
avoid ridiculously long Golomb codes, WavPack generates only Golomb codes with 15
or fewer consecutive 1’s. If a Golomb code for a residual e(k) requires k consecutive
1’s, where k is greater than or equal 16, then WavPack encodes e(k) by generating 16
1’s, followed by the Elias gamma code of k (Code C1 of Table 2.6). When the residuals
are distributed geometrically, this situation is exceedingly rare, so it does not affect
efficiency, but it does prevent extraordinary and rarely-occurring cases from drastically
reducing compression.
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Recall that each encoded value is followed by the sign bit of the original residual
e(k). Thus, an audio sample of zero is inefficiently encoded as the two bits 00. Because
of this, WavPack employs a special method to encode runs of consecutive zero residuals.
A run of k zeros is encoded in the same Elias gamma code preceded by a single 1 to
distinguish it from a regular code (this is done only when the medians are very small to
avoid wasting a bit for every sample.)

One source of less than optimum efficiency with the method described so far is that
sometimes the data is not distributed in an exactly geometrical manner. The decay for
higher values may be faster or slower than exponential, either because the decorrelator is
not perfect or the audio data has uncommon distribution characteristics. In these cases,
it may be that the dynamically estimated median is not a good value for m, or it may
be that no value of m can produce optimal codes. For these cases, a further refinement
has been added that I have named Recursive Golomb Coding.

In this method, we calculate the first median as in Equation (7.10) and denote it by
m. However, for values above the median we subtract m from the value and calculate a
new median, called m′, that represents the 3/4 population point of samples. Finally, we
calculate a third median (m′′) for the sample values that lie above the second median
(m′), and we use this for all remaining partitions (Figure 7.33). The first three coding
zones still represent 1/2, 1/4, and 1/8 of the residuals, but they don’t necessarily span
the same number of possible values as they would with a single m. However, this is
not an issue for the decoder because it knows all the medians and therefore all the span
sizes.

distribution
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Figure 7.33: Median Zones for Recursive Golomb Coding.

In practice, recursive Golomb coding works like this. If the residual being coded
is in the first zone, fine. If not, then subtract m from the residual and pretend we’re
starting all over. In other words, first we divide the residuals into two equal groups
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(under m and over m). Then, we subtract m from the “over m” group (so they start
at zero again) and divide those into two groups. Then, we do this once more. This
way, the first several zones are guaranteed to have the proper distribution because we
calculate the second and third medians directly instead of assuming that they’re equal
in width to the first one. Table 7.34 lists the first few zones where (ab) represents the
adjusted-binary encoding of the remainder (residual modulo m) and S represents the
sign bit.

range prob. coding

0 ≤ residual < m 1/2 0(ab)S
m ≤ residual < m + m′ 1/4 10(ab)S

m + m′ ≤ residual < m + m′ + m′′ 1/8 110(ab)S
m + m′ + m′′ ≤ residual < m + m′ + 2m′′ 1/16 1110(ab)S

. . .

Table 7.34: Probabilities for Recursive Golomb Coding.

Lossy and hybrid coding

Recursive Golomb coding allows arbitrary TSGD integers to be simply and efficiently
coded, even when the distribution is not perfectly exponential and even when it contains
runs of zeros. For the implementation of lossy encoding, it is possible to simply transmit
the unary magnitude and the sign bit, leaving out the remainder data altogether. On
the decode side, the value at the center of the specified magnitude range is chosen as
the output value. This results in an average of three bits per residual as illustrated by
Table 7.35. The table is based on the infinite sum

1 +
∞∑

n=1

n

2n
,

where the 1 represents the sign bit and each term in the sum is a probability multiplied
by the number of bits for the probability. The infinite sum adds up to two bits, and the
total after adding the sign bit is three bits.

prob. bits sent # of bits (# of bits)× prob.

1/2 0S 2 2/2
1/4 10S 3 3/4
1/8 110S 4 4/8
1/16 1110S 5 5/16
1/32 11110S 6 6/32
1/64 111110S 7 7/64
. . . . . . . . . . . .

total 1 3

Table 7.35: Three Bits Per Residual.



7.11 WavPack 781

This works fine. However, a lower minimum bitrate is desired and so a new scheme
is employed that splits the samples 5:2 instead of down the middle at 1:1. In other
words, a special “median” is found that has five residuals lower for every two that are
higher. This is accomplished easily by modifying the procedure above to

if
(
s(k) > m(k)

)
then m(k + 1) = m(k) + 5 · int

[
m(k) + 127

128

]
,

else m(k + 1) = m(k)− 2 · int
[
m(k) + 125

128

]
.

The idea is that the median is bumped up five units every time the value is higher, and
bumped down two units when it is lower. If there are two ups for every five downs, the
median stays stationary. Because the median moves down a minimum of two units, we
consider 1 or 2 to be the minimum (it will not go below this).

Now the first region contains 5/7 of the residuals, the second has 10/49, the third
20/343, and so on. Using these enlarged median zones, the minimum bitrate drops from
3 to 2.4 bits per residual, as shown by the following infinite sum

1 +
∞∑

n=1

5n×2n−1

7n
.

There is an efficiency loss with these unary codes because the number of 1’s and
0’s in the datastream is no longer equal. There is a single 0 for each residual, but since
there are only 1.4 total bits per residual (not counting the sign bit), there must be only
an average of 0.4 1’s per residual. In other words, the probability for 0’s is 5/7 and the
probability for 1’s is 2/7. Using the log2 method to determine the ideal number of bits
required to represent those symbols, we obtain the numbers listed in Table 7.36a and
derive an optimum multibit encoding scheme (Table 7.36b).

symbol freq log2 (1/freq)

0 5/7 0.485427
1 2/7 1.807355

input ideal output
sequence freq # bits sequence

00 25/49 0.970854 0
01 10/49 2.292782 10
1 14/49 1.807355 11

(a) (b)

Table 7.36: Optimum Translation of Unary Magnitudes.

Table 7.37 shows that the average number of unary magnitude bits transmitted is
reduced by the translation to (73/84)×1.4 = 1.21666 ≈ 1.22 bits per sample. We use the
1.4 figure because only the unary magnitude data is subject to this translation; adding
back the untranslated sign bit gets us to about 2.22 bits per sample. This represents
the encoder running “flat out” lossy (i.e., no remainder data sent) however, the method
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input input net∗ output output net∗

sequence freq bits input sequence bits output

00 25/49 2 50/49 0 1 25/49
01 10/49 2 20/49 10 2 20/49
1 14/49 1 14/49 11 2 28/49

totals 1 84/49 73/49
∗The “net” values are the frequency multiplied by the number of bits.

Table 7.37: Net Savings from Unary Translation.

is so efficient that it is used for all modes. In the lossless case, the complete adjusted-
binary representation of the remainder is inserted between the magnitude data and the
terminating sign bit.

In practice, we don’t normally want the encoder to be running at its absolute
minimum lossy bitrate. Instead, we would generally like to be somewhere in-between
full lossy mode and lossless mode so that we send some (but not all) of the remainder
value. Specifically, we want to have a maximum allowed error that can be adjusted
during encoding to give us a specific signal-to-noise ratio or constant bitrate. Sending
just enough data to reach a specified error limit for each sample (and no more) is optimal
for this kind of quantization because the perceived noise is equivalent to the RMS level
of the error values.

To accomplish this, we have the encoder calculate the range of possible sample
values that satisfy the magnitude information that was just sent. If this range is smaller
than the desired error limit, then we are finished and no additional data is sent for that
sample. Otherwise, successive bits are sent to the datastream, each one narrowing the
possible range by half (i.e., 0 = lower half and 1 = upper half) until the size of the
range becomes less than the error limit. This binary process is done in lockstep by the
decoder, to remain synchronized with the bitstream.

At this point it should be clear how the hybrid lossless mode splits the bitstream
into a lossy part and a correction part. Once the specified error limit has been met,
the numeric position of the sample value in the remaining range is encoded using the
adjusted binary code described above, but this data goes into the “correction” stream
rather than the main bitstream. Again, on decoding, the process is exactly reversed so
the decoder can stay synchronized with the two bitstreams.

With respect to the entropy coder, the overhead associated with having two files
instead of one is negligible. The only cost is the difference resulting from coding the
lossy portion of the remainder with the binary splitting method instead of the adjusted
binary method. The rest of the cost comes on the decorrelator side where it must deal
with a more noisy signal.

More information on the theory behind and the implementation of WavPack can
be found in [WavPack 06].


